skip to main content


Search for: All records

Creators/Authors contains: "Neubauer, Scott C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In freshwater wetlands, competitive and cooperative interactions between respiratory, fermentative and methanogenic microbes mediate the decomposition of organic matter. These interactions may be disrupted by saltwater intrusion disturbances that enhance the activity of sulfate-reducing bacteria (SRB), intensifying their competition with syntrophic bacteria and methanogens for electron donors. We simulated saltwater intrusion into wetland soil microcosms and examined biogeochemical and microbial responses, employing metabolic inhibitors to isolate the activity of various microbial functional groups. Sulfate additions increased total carbon dioxide production but decreased methane production. Butyrate degradation assays showed continued (but lower) levels of syntrophic metabolism despite strong demand by SRB for this key intermediate decomposition product and a shift in the methanogen community toward acetoclastic members. One month after removing SRB competition, total methane production recovered by only ∼50%. Similarly, butyrate assays showed an altered accumulation of products (including less methane), although overall rates of syntrophic butyrate breakdown largely recovered. These effects illustrate that changes in carbon mineralization following saltwater intrusion are driven by more than the oft-cited competition between SRB and methanogens for shared electron donors. Thus, the impacts of disturbances on wetland biogeochemistry are likely to persist until cooperative and competitive microbial metabolic interactions can recover fully.

     
    more » « less
  2. Abstract

    The long‐term stability of coastal wetlands is determined by interactions among sea level, plant primary production, sediment supply, and wetland vertical accretion. Human activities in watersheds have significantly altered sediment delivery from the landscape to the coastal ocean, with declines along much of the U.S. East Coast. Tidal wetlands in coastal systems with low sediment supply may have limited ability to keep pace with accelerating rates of sea‐level rise (SLR). Here, we show that rates of vertical accretion and carbon accumulation in nine tidal wetland systems along the U.S. East Coast from Maine to Georgia can be explained by differences in the rate of relative SLR (RSLR), the concentration of suspended sediments in the rivers draining to the coast, and temperature in the coastal region. Further, we show that rates of vertical accretion have accelerated over the past century by between 0.010 and 0.083 mm yr−2, at roughly the same pace as the acceleration of global SLR. We estimate that rates of carbon sequestration in these wetland soils have accelerated (more than doubling at several sites) along with accelerating accretion. Wetland accretion and carbon accumulation have accelerated more rapidly in coastal systems with greater relative RSLR, higher watershed sediment availability, and lower temperatures. These findings suggest that the biogeomorphic feedback processes that control accretion and carbon accumulation in these tidal wetlands have responded to accelerating RSLR, and that changes to RSLR, watershed sediment supply, and temperature interact to determine wetland vulnerability across broad geographic scales.

     
    more » « less
  3. Abstract

    Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We firstdefineeach of the major C pools and fluxes and providerationalefor their importance to wetland C dynamics. For each approach, we clarifywhatcomponent of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such aswhereandwhenan approach is typically used,whocan conduct the measurements (expertise, training requirements), andhowapproaches are conducted, including considerations on equipment complexity and costs. Finally, we reviewkey covariatesandancillary measurementsthat enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.

     
    more » « less
  4. Abstract Saltwater intrusion is the leading edge of sea-level rise, preceding tidal inundation, but leaving its salty signature far inland. With climate change, saltwater is shifting landward into regions that previously have not experienced or adapted to salinity, leading to novel transitions in biogeochemistry, ecology, and human land uses. We explore these changes and their implications for climate adaptation in coastal ecosystems. Biogeochemical changes, including increases in ionic strength, sulfidation, and alkalinization, have cascading ecological consequences such as upland forest retreat, conversion of freshwater wetlands, nutrient mobilization, and declines in agricultural productivity. We explore the trade-offs among land management decisions in response to these changes and how public policy should shape socioecological transitions in the coastal zone. Understanding transitions resulting from saltwater intrusion—and how to manage them—is vital for promoting coastal resilience. 
    more » « less
  5. Abstract

    Sea level rise and changes in precipitation can cause saltwater intrusion into historically freshwater wetlands, leading to shifts in microbial metabolism that alter greenhouse gas emissions and soil carbon sequestration. Saltwater intrusion modifies soil physicochemistry and can immediately affect microbial metabolism, but further alterations to biogeochemical processing can occur over time as microbial communities adapt to the changed environmental conditions. To assess temporal changes in microbial community composition and biogeochemical activity due to saltwater intrusion, soil cores were transplanted from a tidal freshwater marsh to a downstream mesohaline marsh and periodically sampled over 1 year. This experimental saltwater intrusion produced immediate changes in carbon mineralization rates, whereas shifts in the community composition developed more gradually. Salinity affected the composition of the prokaryotic community but did not exert a strong influence on the community composition of fungi. After only 1 week of saltwater exposure, carbon dioxide production doubled and methane production decreased by three orders of magnitude. By 1 month, carbon dioxide production in the transplant was comparable to the saltwater controls. Over time, we observed a partial recovery in methane production which strongly correlated with an increase in the relative abundance of three orders of hydrogenotrophic methanogens. Taken together, our results suggest that ecosystem responses to saltwater intrusion are dynamic over time as complex interactions develop between microbial communities and the soil organic carbon pool. The gradual changes in microbial community structure we observed suggest that previously freshwater wetlands may not experience an equilibration of ecosystem function until long after initial saltwater intrusion. Our results suggest that during this transitional period, likely lasting years to decades, these ecosystems may exhibit enhanced greenhouse gas production through greater soil respiration and continued methanogenesis.

     
    more » « less